

To: Distribution List

Subject: MS-424320-SD-WAN- Amendment 2

References:

- A. NCIA/ACQ/2025/07623, dated 9 December 2025
- B. NCIA/ACQ/2026/06710, dated 27 January 2026- AMD 1

1. We are writing to inform you of the release of Amendment 2 of the subject MS-424320-SD-WAN.
2. The purpose of this Amendment 2 is to:
 - 2.1. Provide clarification to Question 51, Color Cloud, Bearer Change Detection & Capacity Adaptation.
3. The NCI Agency is not liable for any expenses incurred by firms in conjunction with their responses to this Market Survey, and this Survey shall not be regarded as a commitment of any kind concerning future procurement of the items described.
4. Your Point of Contact for all information concerning this Market Survey is Estefania Nunez, NCI Agency Principal Contracting Assistant who may be reached at:
estefania.nunez@ncia.nato.int
5. In accordance with the NATO Management of Non-Classified NATO Information policy (C-M(2002)60), this MS-424320-SD-WAN shall not be published on the internet.
6. Your assistance/participation in this Market Survey request is greatly appreciated.

FOR THE CHIEF OF ACQUISITION:

Tiziana Pezzi
Principal Contracting Officer
NATO Communications and
Information Agency (NCI
Agency)

ATTACHMENT A to MS-424320-SD-WAN - Distribution List

ATTACHMENT B to MS-424320-SD-WAN - Potential Industrial Suppliers

ATTACHMENT C to MS-424320-SD-WAN - Clarification to Question 51

ATTACHMENT A
Distribution List - MS-424320-SD-WAN

NATO Delegation (Attn: Infrastructure Adviser):

Albania	1
Belgium	1
Bulgaria	1
Canada	1
Croatia	1
Czechia	1
Denmark	1
Estonia	1
Finland	1
France	1
Germany	1
Greece	1
Hungary	1
Iceland	1
Italy	1
Latvia	1
Lithuania	1
Luxembourg	1
Montenegro	1
Netherlands	1
Norway	1
North Macedonia	1
Poland	1
Portugal	1
Romania	1
Slovakia	1
Slovenia	1
Spain	1
Sweeden	1
Türkiye	1
United Kingdom	1
United States	1

Belgian Ministry of Economic Affairs

1

Embassies in Brussels (Attn: Commercial Attaché):

Albania	1
Belgium	1
Bulgaria	1
Canada	1
Croatia	1
Czechia	1
Denmark	1
Finland	1
Estonia	1
France	1
Germany	1
Greece	1
Hungary	1
Iceland	1
Italy	1
Latvia	1
Lithuania	1

Luxembourg	1
Montenegro	1
Netherlands	1
Norway	1
North Macedonia	1
Poland	1
Portugal	1
Romania	1
Slovakia	1
Slovenia	1
Spain	1
Sweeden	1
Türkiye	1
United Kingdom	1
United States	1

NATEXs

All NATEXs

1 Each

ATTACHMENT B
Potential Industrial Suppliers
MS-424320-SD-WAN

Vendor	NATO Nation
AIRBUS DEFENCE AND SPACE AS	Norway
AIRBUS DEFENCE AND SPACE SAS	France
CISCO Systems, Inc	United States
CLOUD JUNXION INC	United States
ERICSON/CRADLEPOINT	United States
FAIRWINDS TECHNOLOGIES	United States
FORTINET Inc	United States
Global RadioData Communications Ltd.	United Kingdom
GREY ZONE SERVICES LTD.	United Kingdom
L3 HARRIS TECHNOLOGIES INC	United States
MARLINK	France
MEDIA BROADCAST SATELLITE GmbH	Germany
MILDEF	Sweden
NETWORK INNOVATIONS	United Kingdom
NEXAT	Belgium
ULTISAT INC	United States
USEI-TELEPORT INC	United States
VERSA Group	United States
VIASAT INC	United States
WORLD WIDE TECHNOLOGY	United States

ATTACHMENT C

Clarification to Question 51

51) Color Cloud, Bearer Change Detection & Capacity Adaptation

1. Description on how a Color Cloud connects to the Transport Underlay Network

The Color Cloud (referred as CC, ex. NU, NS, MS,) connects to the SD-WAN transport router as a service, using military-grade or software encryption. The CC does not have visibility, nor dependency on the underlying transport bearer.

All CC traffic traversing the transport domain is fully agnostic to the transport domain. Bearer selection, change, and failover are handled exclusively by the SD-WAN transport domain.

Bearer monitoring and decision-making take place within the SD-WAN fabric. When a bearer changes state, failure, degradation, or capacity variation, the SD-WAN transport router applies its policies and may switch traffic to an alternative bearer.

From the Color Cloud perspective, a bearer change is not observed as a physical or logical transport event. It is only perceived indirectly, through changes in service-level behaviours such as tunnel continuity, path characteristics, or effective throughput. The CC as a result remains decoupled from the transport implementation while maintaining service continuity.

2. Vendor capability question: signalling of bearer change events

Describe how your solution signals bearer change or path selection events from the SD-WAN transport domain toward the Color Cloud service.

Specify which control, telemetry, or notification mechanisms are supported, for example:

- Fast failure detection mechanisms
- Performance monitoring or SLA measurements
- Telemetry streaming or event publication
- Controller APIs or event subscription models
- Routing or service tunnel state changes
- Bearers mapping to the CC via PBR

Clarify whether the CC can receive real-time or close to real-time indication of changes affecting service quality or available capacity

3. If available, provide reference architectures, lab validation results, or operational guidance supporting these capabilities.

The scope of this question is to clarify that, this RFI is not limited to identify an effective PACE mechanism. It also aims to assess how the proposed solution mitigates the impact of transport bearer changes on the Color Cloud service and its operational behaviour.